
Mick Champayne | „Okej Google...”31.07.2019
W trakcie konferencji I/O 2019 Google patrzy na sztuczną inteligencję tylko w kontekście swojej przyszłości. Widzi ją jako narzędzie do „zbudowania Google’a bardziej pomocnego wszystkim”. Uczenie maszynowe, jak i kierunek jego rozwoju, wciąż jednak prowokują liczne pytania. Wiele prezentacji poruszało tematykę wyrównywania za pomocą uczenia maszynowego szans osób znajdujących się w niekorzystnej życiowej sytuacji – o jakich kwestiach etycznych powinni oni pamiętać przystosowując tę technologię do własnego życia?
„Okej, Google, czy roboty przejmą kontrolę nad światem?”
Ja, na przykład, witam naszych mechanicznych suwerenów z otwartymi ramionami. Całe życie czekałam na robota, który będzie nianią, pokojówką i lifestyle guru w jednym, à la Rosie z Jetsonów. I chociaż nie jest to jeszcze do końca możliwe, spokojnie możemy dziś mówić o nowej erze SI.
Według CEO Google’a Sundara Pichai, najważniejszym obecnie celem firmy jest „być bardziej pomocnym." Google pakuje dziś SI wszędzie, od systemów operacyjnych i aplikacji, do samochodowych interfejsów i urządzeń domowych. W tym roku na konferencji I/O Google poświęciło zdecydowanie więcej uwagi uczeniu maszynowemu, dwa lata po oficjalnym postawieniu na SI w dalszym rozwoju spółki.
Dzięki uczeniu maszynowemu życie stało się zdecydowanie prostsze, wygodniejsze, i bardziej wydajne.
Nauczanie maszynowe jest dziś fundamentem każdej nowatorskiej technologii: asystentów głosowych, oprogramowania rozpoznającego rysy twarzy, interfejsów przewidywania tekstu, botów, AR i VR, internetu rzeczy, a nawet analizy ludzkiego genomu. Stanford definiuje uczenie maszynowe jako „dziedzinę zajmującą się nakłanianiem komputerów do podejmowania działań bez ich wyraźnego zaprogramowania,” w zamyśle do dokonywania prognoz, podejmowania decyzji i tworzenia algorytmów, w których wykorzystywane są dane.
Jak pokazała demonstracja Google’s Next Generation Smart Assistant, obecnie jednym z celów badań nad SI w Google jest zaprojektowanie takich maszyn i algorytmów, które będą w stanie możliwie wiernie imitować sposób myślenia człowieka.
„Oho, Google, czy to aby na pewno taki dobry pomysł?”
Dzięki uczeniu maszynowemu życie stało się zdecydowanie prostsze, wygodniejsze, i bardziej wydajne – to właśnie w ten sposób YouTube podsuwa nam kolejne interesujące nas klipy, a Gmail filtruje folder „Spam” w skrzynce i umożliwia zakupy jednym kliknięciem. Jednak uczenie maszynowe niesie za sobą również cały zestaw wyzwań związanych z problematyczną naturą samych zapytań, które często są niedokładne i trudne do przewidzenia.
Dziś często projektujemy i budujemy szybciej niż jesteśmy w stanie wyobrazić sobie wszystkie potencjalne konsekwencje naszych działań, nie mówiąc nawet o ich pełnym zrozumieniu.
Alexandria Ocasio-Cortez napisała ostatnio na Twitterze: „Maszyny są odbiciem swoich twórców, co znaczy, że są wadliwe. Powinniśmy o tym pamiętać.” Trenując SI, trzeba używać danych, które możliwie wiernie odzwierciedlają rzeczywistość. Jeśli nie reprezentują one w odpowiednim stopniu ludzkiej różnorodności (pochodzenia, płci, orientacji seksualnej, niepełnosprawności, klasy, itd.), SI nigdy nie nauczy się, jak takie informacje przetwarzać. „Błąd może pojawić się w dwóch przypadkach: albo dane, które zebrałeś nie odzwierciedlają rzeczywistości, albo reprezentuje on istniejące uprzedzenia,” mówi Karen Hao z MIT Technology Review.
Kwestia zdefiniowania roli, którą SI odgrywać będzie w utrwalaniu systemowych nierówności, jest niezaprzeczalna i niezwykle pilna. Przez ostatnie 50 lat moc obliczeniowa komputerów podwajała się średnio co 18 miesięcy; dziś często projektujemy i budujemy szybciej niż jesteśmy w stanie wyobrazić sobie wszystkie potencjalne konsekwencje naszych działań, nie mówiąc nawet o ich pełnym zrozumieniu.
„To co w takim razie planujesz z tym zrobić, Google?”
Obecnie Google prężnie rozwija etyczną strukturę zasad SI, stworzoną w odpowiedzi na występujące uprzedzenia, stereotypizację i stronniczość. Ich celem jest uwzględnienie kwestii odpowiedzialności w stosowaniu SI, stworzenie narzędzi potrzebnych do jej zbudowania, a także aktywne promowanie zasad inkluzywności oraz intersekcjonalności.
Jedyny sposób na zagwarantowanie SI lepszej przyszłości to zaangażowanie w ich tworzenie ludzi projektujących krytycznie, aktywnie walczących z głęboko zakorzenioną w systemach społecznych dyskryminacją.
By pomóc w osiągnięciu tych celów, prezentacja I/O skupiła się przede wszystkim na dwóch elementach: planów wprowadzenia modeli uczenia maszynowego bezpośrednio do naszych urządzeń oraz wykorzystania ich w celu niesienia pomocy potrzebującym – z uwzględnieniem niedosłyszących, niepiśmiennych, a także pacjentów z nowotworami w początkowych stadiach rozwoju.
Najważniejszymi punktami konferencji były:
-
Automatyczne tworzenie napisów w czasie rzeczywistym dla wszystkich materiałów wideo: od streamowanych do tych we własnym albumie. Zbudowane jest dla ludzi głuchych i niedosłyszących, ale z powodzeniem mogłoby też być stosowane w przestrzeni publicznej lub do transkrypcji rozmów telefonicznych.
-
Aktualizacja Google Lens, która od teraz umieści treści w odpowiednim kontekście, przetłumaczy je i przeczyta z powrotem na głos. Jako że całość przeprowadzana jest przez konkretne urządzenie, a nie w chmurze, nie potrzeba dobrego połączenia z internetem, a prywatność użytkownika pozostaje nienaruszona.
-
Rozproszenie danych przy pomocy technologii „federated learning.” Zamiast przechowywać informacje użytkowników w chmurze, federated learning trenuje modele SI w dużych pakietach na urządzeniach mobilnych, a następnie przesyła zgromadzone wnioski na centralny serwer, przy czym same dane nigdy nie opuszczają urządzenia.
-
TCAV, albo „Testing with Concept Activation Vectors,” to oparta na open-source technologia analizująca modele uczenia maszynowego celem lepszego zrozumienia mechanizmów, za pomocą których SI podejmuje decyzje.
Nie wystarczy jednak polegać wyłącznie na technologii. Amber Case, badaczka designu i autorka książki Calm Technology, mówi że SI i uczenie maszynowe „powinno podkreślać to, co najlepsze i w technologii, i w ludzkości.” Google przyznaje, że rozmaite uprzedzenia już teraz negatywnie wpływają na kształt danych, zarówno tych zebranych, jak i tych, które dopiero zbierzemy. Jedyny sposób na zagwarantowanie SI lepszej przyszłości oraz bezstronnych produktów, praktyk i wyników to zaangażowanie w ich tworzenie ludzi projektujących krytycznie, aktywnie walczących z głęboko zakorzenioną w systemach społecznych dyskryminacją. „Zbudowanie Google’a pomocnego wszystkim wiąże się z rozwiązaniem kwestii dyskryminacji. Musimy wiedzieć, jak działa model, i z czego wynikają uprzedzenia. Poprawimy stopień przejrzystości naszych działań,” zadeklarował Pichai, CEO Google'a.
zobacz także
- „Come Together”: Członkowie Rammsteina i Faith No More łączą siły w coverze utworu The Beatles
Newsy
„Come Together”: Członkowie Rammsteina i Faith No More łączą siły w coverze utworu The Beatles
- The Rolling Stones na Marsie. NASA nazywa imieniem zespołu skałę, która przetoczyła się po Czerwonej Planecie
Newsy
The Rolling Stones na Marsie. NASA nazywa imieniem zespołu skałę, która przetoczyła się po Czerwonej Planecie
- „Without Remorse”: Mściwy Michael B. Jordan w zwiastunie thrillera na bazie powieści Toma Clancy'ego
Newsy
„Without Remorse”: Mściwy Michael B. Jordan w zwiastunie thrillera na bazie powieści Toma Clancy'ego
- Znany klan graczy FaZe nakręcił film grozy. Jest już zwiastun
Newsy
Znany klan graczy FaZe nakręcił film grozy. Jest już zwiastun
zobacz playlisty
-
Walker Dialogues and Film Retrospectives: The First Thirty Years
12
Walker Dialogues and Film Retrospectives: The First Thirty Years
-
Inspiracje
01
Inspiracje
-
Lądowanie na Księżycu w 4K
05
Lądowanie na Księżycu w 4K
-
Branded Stories PYD 2020
03
Branded Stories PYD 2020